

UN ECE 155 Threats in the real world: Wireless Attacks and Mitigations. A case study

Stefano Di Paola - CTO

together toward excellence

AN IMQ GROUP COMPANY

Agenda

- Introduction to IMQ Minded Security
- Automotive CyberSecurity & UNECE R155
- Choosing a Case Study
- Conclusions

Intro to IMQ Minded Security

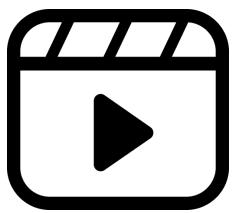
- ✓ IMQ Minded Security started their business in 2007 performing Manual Secure Code Review and Web Application Penetration Testing and has lead the OWASP Testing Guide since 2006.
- Today IMQ Minded Security combines the latest security research with our worldwide recognized testing techniques to meet your business goals and strengthen the security of your products and services.
- We are living in the era of insecure software, our Software Security Experts can guide you to implement the roadmap for Software Security by Design.

Software Security by Design

IMQ Minded Security Customers & Global Reach

Who Am I?

- Stefano Di Paola
- ✓ Seasoned App Sec Expert ~20Yrs
- ✓ CTO & CoFounder @ IMQ MindedSecurity
- Security Researcher with dozens of new Techniques, Tools & Security Bugs.
- ✓ Vehicle Security & Data Access @EuroNCAP WG
- Invited speaker at most important CyberSec conferences worldwide



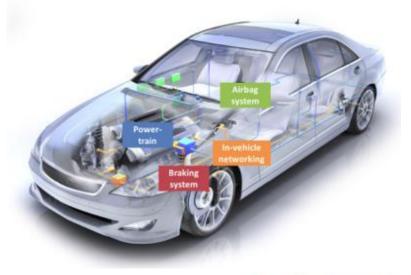
A Primer on CyberSec Awareness

Attack Example on a Passive Key Entry and Start

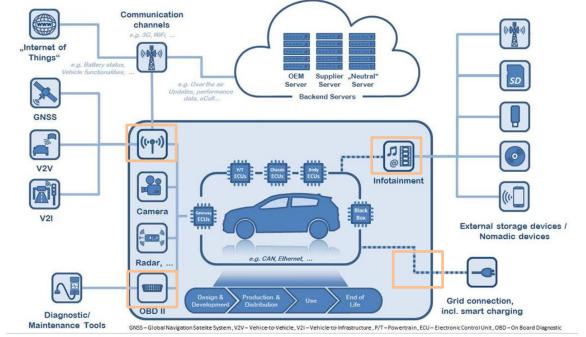
Play Me

Courtesy: of KU Leuven COSIC. Original Video link <u>https://www.youtube.com/watch?v=clrNuBb3myE</u>

How to Prevent These Scenarios?


Example of Main Threats on PKES

Target	Threat	Attack	Mitigation
Key Fob	Unauthorized FW Update	An attacker might try to <u>abuse the wireless update</u> <u>functionality</u> to update the PKES with a malicious FW	Use a <u>Signed Firmware</u> to confirm Integrity
Encryption Keys	Direct Access to Encryption Keys	An attacker might <u>abuse</u> <u>key cloning functionalities</u> to impersonate owner .	Create <u>physical confirmation</u> for Key Cloning


Automotive Cyber Security

- Automotive Cyber Security refers to the branch of computer security focused on the cyber risks related to the automotive context.
 - Not to be confused with automotive safety.
- Modern automobiles contain over 100 of ECUs (Electronic Control Units) networked together.
- ECUs control several aspects that can harm physical safety.
- They need to be robust and resilient.

Automotive Wireless Attack Surface

BUT... Modern Cars are not only ECUs.

Entrypoint ECUs

- Passive Anti-Theft System (PATS)
 - Range ~10 cm
- Tire Pressure Monitoring System (TPMS)
 - Range ~1 m
- Remote Keyless Entry/Start (RKE)
 - Range ~5-20 m
- Bluetooth
 - Range ~10 m
- Radio Data System
 - Range ~100 m
- DAB+
- Telematics/Cellular/Wi-Fi
 - Range varying but broad
- Internet/Apps

Long-range

Short-range

Exposed interfaces:

- WI-FI
- GSM
- CAN Bus
- Encryption Channels
- Bluetooth

Automotive CyberSec Impacts as per ISO21434

When does an issue becomes Security related?

<u>Rating</u> <u>Category</u>	Severe	Major	Moderate	Negligible
Safety				1
Financial		1		
Operational			1	
Privacy	1			

EXAMPLE 1 The asset is personal information (customer personal preferences) stored in an infotainment system and its cybersecurity property is confidentiality. The damage scenario is disclosure of the personal information without the customer's consent resulting from the loss of confidentiality.

EXAMPLE 2 The asset is data communication of the braking function and its cybersecurity property is integrity. The damage scenario is collision with following vehicle (rear-end collision) caused by unintended full braking when the vehicle is travelling at high speed.

UNECE R155: Introduction

UN REGULATION ON UNIFORM PROVISIONS CONCERNING THE APPROVAL OF VEHICLES WITH REGARDS TO CYBER SECURITY MANAGEMENT SYSTEM

- Formalized *Threat Analysis*
- Asks Vendors to **implement** a <u>Security Process</u> on several levels
- Verification based on a set of control audits
- CyberSec Management System (CSMS) shall <u>cover security</u> <u>aspects</u> in **every phase**.
 - Development/Production/Post Production

UNECE R155 says that the Vendor Shall

- 1. Provide Documented proof of deployed CSMS
- 2. Perform a Specific Threat Analysis on Cars and Services

3. Implement the mitigations

UNECE R155 says that the Vendor Shall

- 1. Provide Documented proof of deployed CSMS
- 2. Perform a Specific Threat Analysis on Cars and Services

3. Implement the mitigations

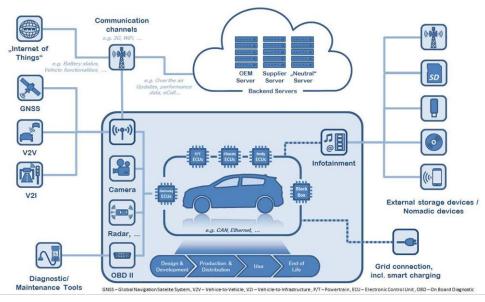
UNECE R155 Proposed Threats

Methodology Based on attack surface and threat analysis + Mitigations

		level descriptions of ility/threat		Example of vulnerability or attack method	Mitigation
4.3.6. Threats to vehicle data/code	19	Extraction of vehicle data/code	19.1.	Extraction of copyright or proprietary software from vehicle systems (product piracy)	Access control techniques and designs shall be applied to protect system data/code. Example Security Controls can be found in OWASP
			19.2.	Unauthorized access to the owner's privacy information such as personal identity, payment account information, address book information, location information, vehicle's electronic ID, etc.	Through system design and access control it should not be possible for unauthorized personnel to access personal or system critical data. Examples of Security Controls can be found in OWASP
			19.3.	Extraction of cryptographic keys	Security controls shall be implemented for storing cryptographic keys e.g. Security Modules

Annex A Threats

Annex B - Mitigations


Research and Technical Knowledge are the essence of the missing parts:

<u>Test for the correctness of the implemented mitigations.</u>

UNECE R155: Choose a Case Study

Something That Happens to Be on *Every Car*?

What about Radio Receivers?

Digital Broadcasting

- Not Only Analogue Audio but <u>Digital Data</u> that must be Parsed.
- Opening a door to attack scenarios:
 - RDS: <u>Radio Service Name</u>, <u>Radiotext</u>...
 - DAB+: Digital Audio (+Formats), Images (+Formats), Interaction (Clickable URLs etc..)

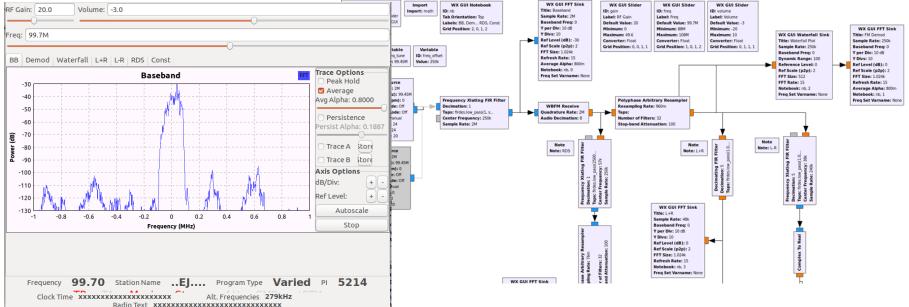
RDS Receivers Parse and Render Data

The RDS Data Specifications <u>https://www.iz3mez.it/wp-content/library/ebook/RDS%20-</u>%20The%20Radio%20Data%20System.pdf

Infotainment - Main Threats On RDS

Target	Threat	Attack	Mitigation
User Interface	Display Message Spoofing	An attacker might try to <u>broadcast radiotext</u> <u>messages</u> over victims frequency	None. Issue by Design. Obsolete Technology from 1984
Infotainment OS	Privilege Escalation via Rendering Parser Injection	An attacker might send <u>radioText containing</u> <u>characters that are specia</u> l to the Rendering Engine (HTML Entities)	Escape Special Characters
RDS-TMC (Traffic Message Channel)	Unauthorized Traffic Messages	An attacker might <u>broadcast</u> <u>alerts</u> of any kind generating panic over population.	Use Asymmetric Encryption for TMC

Preparing the Testbed: the RDS Transmitter


Meanwhile @ IMQ MindedSecurity Research Labs...

RDS Transmitter with a RaspberryPi

Preparing the Testbed: Setting Digital Audio Transmissions

By IMQ MindedSecurity Research Labs

Attacking & Fooling a Real **RDS** Receiver

By IMQ MindedSecurity Research Labs

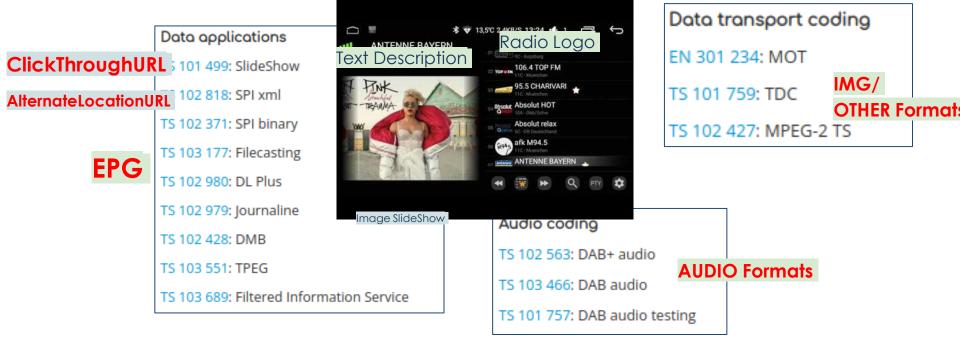
Demos of Traffic Message Channel Abuses

Barisani-Bianco, BlackHat 2007

Bloessl, Fosdem 2015

DAB+ Decoders Parse and Render Data

Quite the same as RDS


Right?

DAB+ Data Specifications

https://www.worlddab.org/dab/technical-specifications

DAB+ Attack Surface

20+ Specifications, 50+ Parsers

DAB+ Data Specifications

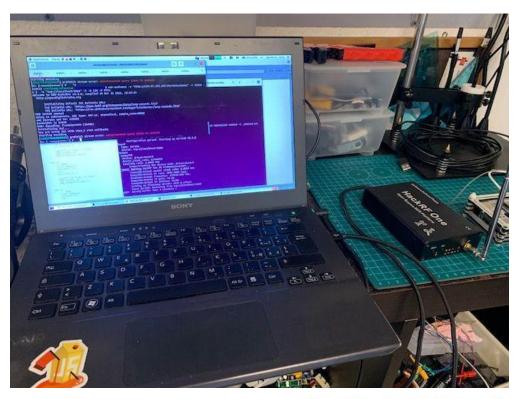
https://www.worlddab.org/dab/technical-specifications

DAB+ & Security Bugs

В зіби ій	The A Register [®]
* APPLICATIONS	*}
Car rad	ios crashed by station broadcasting
	with no file extension
Video killed the	e radio star, pictures came and broke your car
Thomas Claburn in San	Francisco Thu 10 Feb 2022
141 🖵	In January, drivers of older model Mazdas in the area around Seattle,
₾	Washington, started seeing their HD Radio receivers crash upon tuning to the local public radio station.

Infotainment - Main Threats On DAB+

Target	Threat	Attack	Mitigation
User Interface	Display Message Spoofing	An attacker might try to <u>broadcast</u> <u>text messages</u> over victims frequency	None. Issue by Design. Obsolete Technologies from 1997(DAB) and 2007 (DAB+)
Infotainment OS	Privilege Escalation via Rendering Parser Injection	An attacker might send <u>radioText</u> containing <u>characters that are</u> <u>specia</u> l to the Rendering Engine (HTML Entities)	Escape Special Characters
Resources Storage	Integrity compromission of DB storage	An attacker might broadcast text data containing <u>special characters</u> that will result in SQL Injection .	Use prepared Statements or correctly escape special characters.
Resources Storage	Integrity compromission of file storage	An attacker might broadcast <u>image</u> <u>names</u> containing <u>special</u> <u>characters</u> that might fool the application and overwrite arbitrary files .	Escape special characters in File names sent over the air or remove them/use hash.



Preparing the Testbed: DAB+ Transmitter

DAB+ Transmitter with:

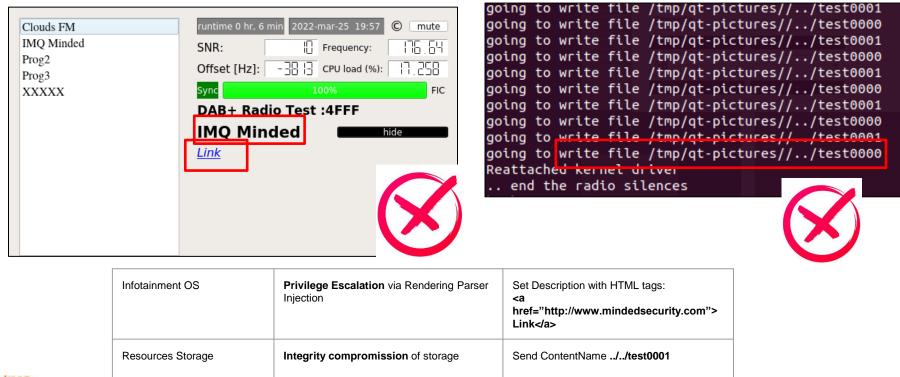
- HackRF One
- ODR Framework

By IMQ MindedSecurity Research Labs

Infotainment - Attacks On DAB+

Target	Threat	Attack	Successful Attack
User Interface	Display Message Spoofing	Force DAB Transmission over existing channels over	See Rendered Spoofed Message on the Display instead of expected Message IMQ Minded
Infotainment OS	Privilege Escalation via Rendering Parser Injection	Set Description with HTML tags: Link</a 	Shows a rendered link instead of the full text:
Resources Storage	Integrity compromission of storage	Send ContentName//test0001	Find a filename out of the expected directory write file /tmp/qt-pictures///test0000

Attacking DAB+ Apps


hrf="http://www.mindedsecurity.c om"> Link

Attacking DAB+ Apps

Conclusions

- Threat Analysis on **DAB+** revealed that it has a quite **large** attack surface.
- Some DAB+ application is affected by specific attacks with security impacts.
- Attackers can use *infotainment* systems to gain control from remote to local network.

Conclusions

- Applying UNECE R155 & ISO 21434 Methodology will help to:
 - Shift security left
 - Define a repeatable process
 - Make attacks harder
- Make it right and it will give you back!

• **DAB+** still need some (Security) attention!

THANK YOU FOR YOUR ATTENTION

